

SEL0365 – Linhas de Transmissão de Energia Elétrica

Lista de Exercícios 1 – Cálculo de Parâmetros de Linhas de Transmissão

- 1. A Figura 1 apresenta a silhueta de uma linha de transmissão com classe de tensão de 345 kV. Os condutores fase e para-raios são condutores código *Rail* e as dimensões construtivas e características elétricas para esse cabo e outros do tipo ACSR, *Aluminum Cable Steel Reinforced Conductors*, são apresentadas na Figura 3. O espaçamento entre os condutores fase é apresentado é de 0,457 m como destacado na Figura 2. Assim, considerando essas informações determine: (a) A matriz de resistência por condutor; (b) A matriz das indutâncias por condutor; (c) A matriz inversa das capacitâncias por condutor; (d) Determine as matrizes de resistência, capacitância inversa e de indutâncias por fase, ou seja, inserindo o efeito dos cabos para-raios e a multiplicidade de condutores por fase; (e) Tomando os resultados do Item (d) determine as matrizes supondo a transposição da linha de transmissão; (f) Tomando o resultado alcançado nos itens de (a) a (c) calcule como as mesmas para a transposição apenas dos condutores fase e de posse desses resultados determine as matrizes de parâmetros por fase; (g) Compare as matrizes de parâmetros obtidas no Item (e) com as obtidas no Item (f).
- 2. A Figura 4 apresenta a silhueta de uma linha de transmissão com classe de tensão de 500 kV. Os condutores fase são condutores código Rail. As dimensões construtivas e características elétricas para esse cabo e outros do tipo ACSR, Aluminum Cable Steel Reinforced Conductors, são apresentadas na Figura 3. Os condutores para-raios são cordoalhas de aço bitola 3/8" do tipo EHS, extra-alta resistência, com raio externo de 4.765 mm e raio efetivo de 3.711 mm. Considere uma permeabilidade relativa do aço igual a 70. O espaçamento entre os condutores fase é apresentado é de 0,457 m como destacado na Figura 5. Assim, considerando essas informações determine: (a) A matriz de resistência por condutor; (b) A matriz das indutâncias por condutor; (c) A matriz inversa das capacitâncias por condutor; (d) Determine as matrizes de resistência, capacitância inversa e de indutâncias por fase, ou seja, inserindo o efeito dos cabos para-raios e a multiplicidade de condutores por fase; (e) Tomando os resultados do Item (d) determine as matrizes supondo a transposição da linha de transmissão; (f) Tomando o resultado alcançado nos itens de (a) a (c) calcule como as mesmas para a transposição apenas dos condutores fase e de posse desses resultados determine as matrizes de parâmetros por fase; (g) Compare as matrizes de parâmetros obtidas no Item (e) com as obtidas no Item (f).

EESC · USP Universidade de São Paulo

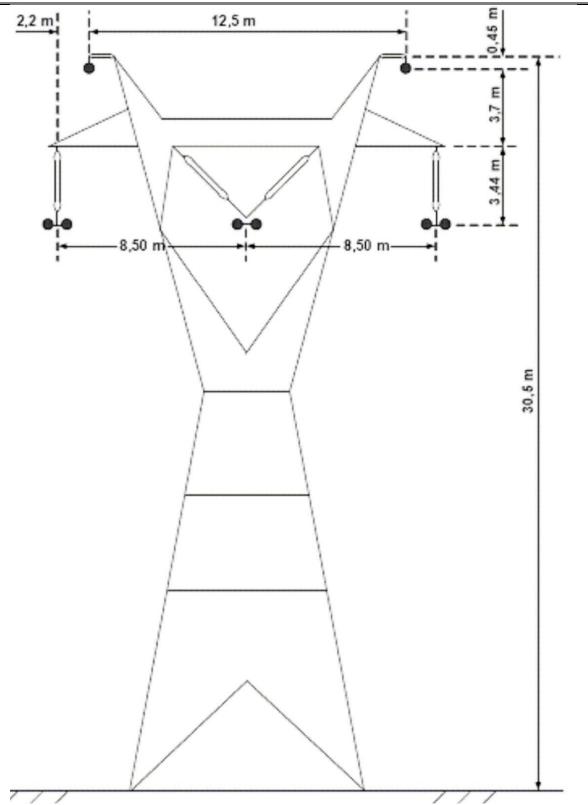


Figura 1 – Linha de Transmissão de Energia Elétrica Classe de 345 kV.

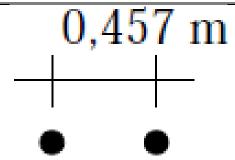


Figura 2 – Espaçamento entre condutores para a linha de transmissão de 345 kV.

Code	Cross-Section Area				Diameter			Approx. Current- Carrying Capacity	Resistance (mΩ/km)				
	Total - (mm²) (Aluminum		Stranding	Conductor	Core			DC	AC (60 Hz		2)	GMR
		(kcmil)	(mm ²)	Al/Steel	(mm)	(mm)	Layers	(Amperes)	25°C	25°C	50°C	75°C	(mm)
_	1521	2 776	1407	84/19	50.80	13.87	4		21.0	24.5	26.2	28.1	20.33
Joree	1344	2 5 1 5	1274	76/19	47.75	10.80	4		22.7	26.0	28.0	30.0	18.93
Thrasher	1235	2 3 1 2	1171	76/19	45.77	10.34	4		24.7	27.7	30.0	32.2	18.14
Kiwi	1146	2 167	1098	72/7	44.07	8.81	4		26.4	29.4	31.9	34.2	17.37
Bluebird	1181	2 156	1092	84/19	44.75	12.19	4		26.5	29.0	31.4	33.8	17.92
Chukar	976	1 781	902	84/19	40.69	11.10	4		32.1	34.1	37.2	40.1	16.28
Falcon	908	1 590	806	54/19	39.24	13.08	3	1 380	35.9	37.4	40.8	44.3	15.91
Lapwing	862	1 590	806	45/7	38.20	9.95	3	1 370	36.7	38.7	42.1	45.6	15.15
Parrot	862	1 510	765	54/19	38.23	12.75	3	1 340	37.8	39.2	42.8	46.5	15.48
Nuthatch	818	1 510	765	45/7	37.21	9.30	3	1 340	38.7	40.5	44.2	47.9	14.78
Plover	817	1 431	725	54/19	37.21	12.42	3	1 300	39.9	41.2	45.1	48.9	15.06
Bobolink	775	1 431	725	45/7	36.25	9.07	3	1 300	35.1	42.6	46.4	50.3	14.39
Martin	772	1 351	685	54/19	36.17	12.07	3	1 250	42.3	43.5	47.5	51.6	14.63
Dipper	732	1 351	685	45/7	35.20	8.81	3	1 250	43.2	44.9	49.0	53.1	13.99
Pheasant	726	1 272	645	54/19	35.10	11.71	3	1 200	44.9	46.1	50.4	54.8	14.20
Bittern	689	1 272	644	45/7	34.16	8.53	3	1 200	45.9	47.5	51.9	56.3	13.56
Grackle	681	1 192	604	54/19	34.00	11.33	3	1 160	47.9	49.0	53.6	58.3	13.75
Bunting	646	1 193	604	45/7	33.07	8.28	3	1 160	48.9	50.4	55.1	59.9	13.14
Finch	636	1 114	564	54/19	32.84	10.95	3	1 110	51.3	52.3	57.3	62.3	13.29
Bluejay	603	1 113	564	45/7	31.95	8.00	3	1 110	52.4	53.8	58.9	64.0	12.68
Curlew	591	1 033	523	54/7	31.62	10.54	3	1 060	56.5	57.4	63.0	68.4	12.80
Ortolan	560	1 033	525	45/7	30.78	7.70	3	1 060	56.5	57.8	63.3	68.7	12.22
Merganser	596	954	483	30/7	31.70	13.60	2	1 010	61.3	61.8	67.9	73.9	13.11
Cardinal	546	954	483	54/7	30.38	10.13	3	1 010	61.2	62.0	68.0	74.0	12.31
Rail	517	954	483	45/7	29.59	7.39	3	1 010	61.2	62.4	68.3	74.3	11.73
Baldpate	562	900	456	30/7	30.78	13.21	2	960	65.0	65.5	71.8	78.2	12.71
Canary	515	900	456	54/7	29.51	9.83	3	970	64.8	65.5	72.0	78.3	11.95
Ruddy	478	900	456	45/7	28.73	7.19	3	970	64.8	66.0	72.3	78.6	11.40
Crane	501	875	443	54/7	29.11	9.70	3	950	66.7	67.5	74.0	80.5	11.80
Willet	474	874	443	45/7	28.32	7.09	3	950	66.7	67.9	74.3	80.9	11.25
Skimmer	479	795	403	30/7	29.00	12.40	2	940	73.5	74.0	81.2	88.4	11.95
Mallard	495	795	403	30/19	28.96	12.42	2	910	73.5	74.0	81.2	88.4	11.95
Drake	469	795	403	26/7	28.14	10.36	2	900	73.3	74.0	81.2	88.4	11.43
Condor	455	795	403	54/7	27.74	9.25	3	900	73.4	74.1	81.4	88.6	11.22
Cuckoo	455	795	403	24/7	27.74	9.25	2	900	73.4	74.1	81.4	88.5	11.16
Tern	431	795	403	45/7	27.00	6.76	3	900	73.4	74.4	81.6	88.8	10.73
Coot	414	795	403	36/1	26.42	3.78	3	910	73.0	74.4	81.5	88.6	10.27
Buteo	447	715	362	30/7	27.46	11.76	2	840	81.8	82.2	90.2	98.3	11.34
Redwing	445	715	362	30/19	27.46	11.76	2	840	81.8	82.2	90.2	98.3	11.34
Starling	422	716	363	26/7	26.7	9.82	2	840	81.5	82.1	90.1	98.1	10.82
Crow	409	715	362	54/7	26.31	8.76	3	840	81.5	82.2	90.2	98.2	10.62

Figura 3 – Tabela de cabos.

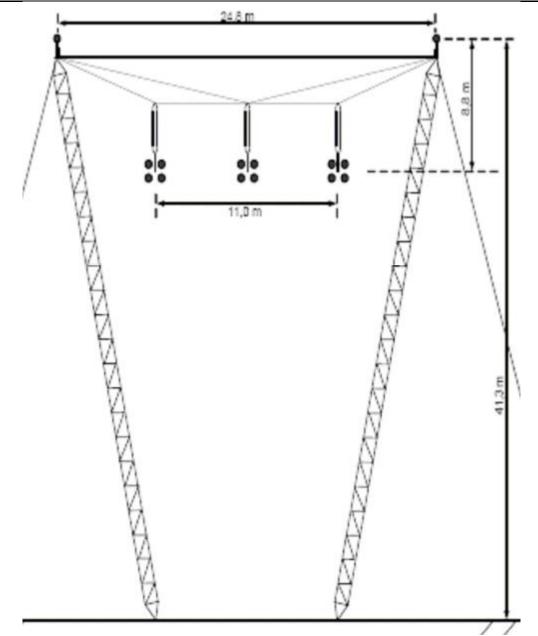


Figura 4 – Linha de Transmissão de Energia Elétrica Classe de 500 kV.

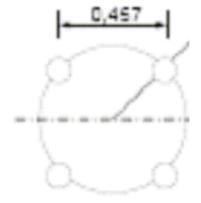


Figura 5 – Espaçamento de condutores para as linhas de transmissão de 500 kV e 765 kV.

EESC USP Universidade de São Paulo

3. A Figura 6 apresenta a silhueta de uma linha de transmissão com classe de tensão de 765 kV. Os condutores fase são condutores código Bluejay. As dimensões construtivas e características elétricas para esse cabo e outros do tipo ACSR, Aluminum Cable Steel Reinforced Conductors, são apresentadas na Figura 3. Os condutores para-raios são cordoalhas de aço bitola 3/8" do tipo EHS, extra-alta resistência, com raio externo de 4.765 mm e raio efetivo de 3.711 mm. Considere uma permeabilidade relativa do aço igual a 70. O espaçamento entre os condutores fase é apresentado é de 0,457 m como destacado na Figura 5. Assim, considerando essas informações determine: (a) A matriz de resistência por condutor; (b) A matriz das indutâncias por condutor; (c) A matriz inversa das capacitâncias por condutor; (d) Determine as matrizes de resistência, capacitância inversa e de indutâncias por fase, ou seja, inserindo o efeito dos cabos para-raios e a multiplicidade de condutores por fase; (e) Tomando os resultados do Item (d) determine as matrizes supondo a transposição da linha de transmissão; (f) Tomando o resultado alcançado nos itens de (a) a (c) calcule como as mesmas para a transposição apenas dos condutores fase e de posse desses resultados determine as matrizes de parâmetros por fase; (g) Compare as matrizes de parâmetros obtidas no Item (e) com as obtidas no Item (f).

EESC · USP Universidade de São Paulo

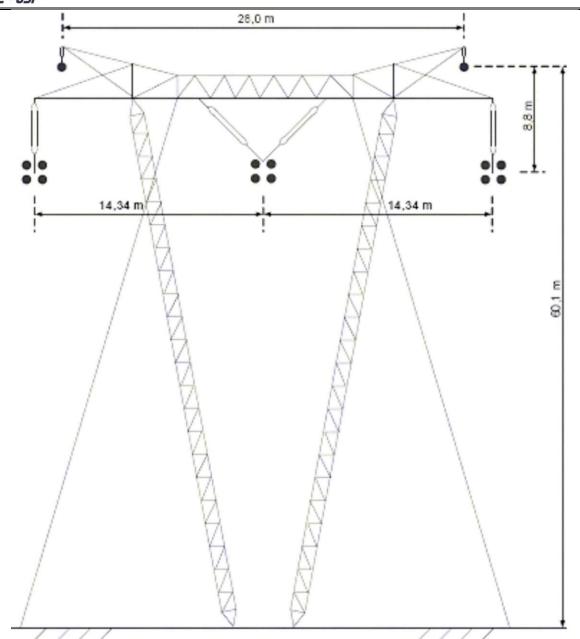


Figura 6 – Linha de Transmissão de Energia Elétrica Classe de 765 kV.